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Abstract

We propose a novel technique for building geometry-preserving
topological landscapes. Our technique creates a direct correlation
between a scalar function and its topological landscape. This cor-
relation is accomplished by introducing the notion of geometric
proximity into the topological landscapes, reflecting the distance
of topological features within the function domain. Furthermore,
this technique enables direct comparative analysis between scalar
functions, as long as they are defined on the same domain.

We describe a construction technique that consists of three stages:
contour tree computation, contour tree layout, and landscape con-
struction. We provide a detailed description for the latter two steps.
For the contour tree layout stage, we discuss dimension reduction
and edge routing techniques that produce a drawing of the contour
tree on the plane that preserves the geometric proximity. For the
landscape construction stage, we develop a contour construction al-
gorithm that takes the contour tree layout as an input, adds contours
at heights that correspond to saddles of the contour tree, and pro-
duces a contour map. After an additional triangulation step, this
construction method results in the landscape that has the same con-
tour tree as the original function.

CR Categories: I.3.8 [Computing Methodologies]: Com-
puter Graphics—Applications I.3.M [Computer Graphics]:
Miscellaneous—Scalar Field Visualization

Keywords: scalar field topology, topological landscapes, visual
metaphor, multidimensional scaling

1 Introduction

In light of the recent advances in simulation capabilities and the
growth of available computational power, visual exploration of sci-
entific data is becoming an increasingly important task. An inte-
gral part of visual exploration is the presentation of helpful two-
and three-dimensional abstractions that provide an insight into the
structure of the scientific data.

One approach to creating such abstractions is based on the use of
topological information. Important insights are known to be ob-
tained using topological analysis in a number of fields [Weber et al.
2007b; Bremer et al. 2009]. In particular, the contour tree was ex-
tensively used in scalar data analysis and visualization [Bajaj et al.
1998; van Kreveld et al. 1997; Carr et al. 2003; Mizuta et al. 2004].
However, interpreting the contour tree usually requires at least an
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intermediate level understanding of Morse theory and related con-
cepts. As a result, topological landscapes [Weber et al. 2007a] have
been developed to convey the same information in a more intuitive
manner, namely as a two-dimensional terrain with a same level-set
topology as the original data set.

A major feature that is missing in the original technique by Weber et
al. [2007a] and its modifications [Harvey and Wang 2010; Oester-
ling et al. 2010a; Oesterling et al. 2011] is a correlation between the
geometrical placement of the topological features in the landscape
and the original domain space. This property simplifies the process
of understanding the landscapes by domain scientists by correlat-
ing the proximity of the topological features. It also adds a new
capability of comparing functions. However, given the potential
complexity and higher dimensionality of the data, it is not simple
to develop it.

In this paper, we propose a new technique for building geometry-
preserving topological landscape from a contour tree, which ad-
dresses the problem of correlating the function and its topological
landscape. The proposed technique also makes it possible to com-
pare several complex scalar functions via their topological land-
scapes, something previous versions of the topological landscapes
lack.

The technique consists of three major stages: first, we compute a
contour tree of the input function; then, we use the dimension re-
duction to project the vertices of the contour tree onto the plane
and graph drawing algorithm to connect them by non-intersecting
edges; finally, we apply a contour construction algorithm, which
creates contours of different height and produces the depiction of
the terrain similar to the contour map. Finally, after triangulat-
ing the terrain, we render the surface that results in the geometry-
preserving topological landscape. We demonstrate the use of our
technique in case of performance data analysis.

Our contributions are a three-stage technique for creation of
geometry-preserving topological landscapes; the capability to com-
pare several functions via their landscapes; and an example appli-
cation in performance data analysis.

2 Related Work

2.1 Scalar Field Topology

Scalar field topology characterizes the data by topology changes
of level sets. Given a real-valued function without degenerate
critical points, level set topology changes only at isolated critical
points [Milnor 1963]. The contour tree tracks the change in topol-
ogy of level sets as they appear at minimum, split and merge at
saddles, and disappear at maximum [Carr et al. 2003].

The persistence of the level set is its “lifespan,” computed as an
absolute function value difference between the critical points that
constitute the given level set. The branch decomposition [Pascucci
et al. 2005] is a multi-resolution representation of the contour tree
that decomposes it into the branches that correspond to extremum-
saddle pairs. This representation creates a hierarchical structure,



which allows a traversal of the contour tree efficiently up to a de-
sired level of detail.

2.2 Contour Tree Visualization

A number of visual models for the contour tree exists. For exam-
ple, planar and volume graph representations of the contour tree
are widely used [Gansner and North 1999; Heine et al. 2011]. In
fact, our technique produces the planar graph representation of the
contour tree as an intermediary result (detailed discussion is in Sec-
tion 2.4).

While a graph representation is a good starting point, it is often
hard to visually derive the required information from it, especially
in case of large contour trees. To address this issue, more intu-
itive visualizations were proposed. The contour nest [Mizuta et al.
2004; Mizuta et al. 2006] focuses on the nesting properties of iso-
surfaces and represents the contour tree as a set of nested rectangles,
where rectangle size corresponds to feature size. We consider an-
other metaphor that provides the requested insight called topolog-
ical landscape, proposed by Weber et al. [Weber et al. 2007a]. It
proved to be useful in several application fields [Harvey and Wang
2010; Oesterling et al. 2010a; Oesterling et al. 2011; Oesterling
et al. 2010b].

In the original work [Weber et al. 2007a], a topological landscape
was constructed from the persistence-based branch decomposi-
tion [Pascucci et al. 2005] of the contour tree [Carr et al. 2003], such
that each branch corresponds to some box element of the landscape.
Box elements were arranged using a spiral layout. Later, several
modified versions of the original topological landscapes were pro-
posed [Oesterling et al. 2010a; Oesterling et al. 2011], including the
one that uses tree map layout scheme for box elements [Harvey and
Wang 2010]. However, both layout schemes (spiral and tree map)
ignore feature proximity in the domain. Therefore, we propose a
new layout scheme that consists of three steps: projecting vertices
of the contour tree onto the plane; projecting edges of the contour
tree onto the plane; drawing contours around the projected contour
tree. These steps produce the terrain representation similar to the
topographic map, which after additional triangulation step results
in the desired landscape.

2.3 Dimension Reduction

In the first stage of the proposed layout method, vertices of the
contour tree are projected onto the plane. This projection can be
achieved by number of dimension reduction techniques (we refer
to the work by Fodor [2002] for an overview). In particular, we
choose classical multidimensional scaling [Torgerson 1952]. It is
a well-accepted method [Garth et al. 2004; Engel et al. 2011] that
preserves relative distances between points, as they are projected
from the original domain onto the plane.

2.4 Graph Drawing

Once the vertices of the contour tree are fixed, we need to layout the
edges onto the plane. A number of algorithms for drawing a tree on
the plane exist, see the book by Tamassia [2012] for an overview.
Level-based layouts arrange the tree in a hierarchical fashion, start-
ing from the root vertex. Radial layouts draw the vertices of the tree
on concentric circles with different radii. However, these methods
assume that vertex locations are flexible, which is not true in our
case. Pach and Wenger [2001] address the problem of drawing a
tree with fixed vertex locations. However, the authors mainly dis-
cuss theoretical issues and limitations, such as an upper bound on
number of bends per edge. While they describe a high-level scheme
for drawing an actual tree, it appears to be theoretical and mostly for

illustration purposes. In particular, they allow the spacing between
the edges to be infinitely small, leading to potentially cluttered lay-
outs.

Alternatively, it is possible to draw the edges iteratively, using edge
routing algorithms. Inspired by the fields of robotics and circuit
design, these methods are based on notion of finding the route be-
tween two fixed locations with given obstacles. Usually, these ob-
stacles are the vertex locations and previously drawn edges, given
that layout should be non- intersecting. Drawing an edge as a single
straight line is not always possible due to potential obstacles. In-
stead, an edge can be drawn via polyline, curve, etc. The majority
of the edge routing algorithms tries to optimize certain predefined
requirements for the route [Dwyer and Nachmanson 2009], such as
minimizing a number of bends or maximizing the smallest bending
angle. However, we need the graph layout as an input for con-
structing contours. This imposes a requirement that edges should
be spread out. Currently, there is no method satisfying this require-
ment. Therefore, we propose an edge routing algorithm, which for
each edge uses the Voronoi diagram of already drawn parts of the
contour tree, hence satisfying the stated requirement.

Once we have computed the layout of the contour tree on the plane,
we apply the contour construction algorithm, described in Sec-
tion 3.3. Finally, we compute the constrained Delaunay triangu-
lation and render the surface to produce the resulting landscape.

3 Algorithm

In this section we present an algorithm for building the geometry-
preserving landscape. The general outline of the algorithm is as fol-
lows. First, we compute the contour tree from the data. Then, we
use multidimensional scaling to project its vertices onto the plane.
Subsequently, we project the edges of the contour tree onto the
plane. Once the contour tree layout is finalized, we construct con-
tours based on the contour tree, and triangulate the resulting contour
map to produce the required landscape.

3.1 Contour Tree Computation

Consider a scalar function f : Rd → R. We compute a contour
tree of the function f using the algorithm by Carr et al. [2003], and
construct persistence-based branch decomposition [Pascucci et al.
2005] from it. Additionally, we record the spatial locations of con-
tour tree vertices in the original domain space.

3.2 Contour Tree Layout

Let’s denote a point set Pd = {p1, p2, ..., pN} to be the spa-
tial locations of the contour tree vertices V = {v1, v2, .., vN}
in d-dimensional space. We apply the classical multidimensional
scaling method to the point set to project it to two dimensions
Pd

MDS−−−→ P2.

Once the locations of the vertices are calculated, we start drawing
the edges of the contour tree iteratively. For this purpose we design
an algorithm that for a given edge e = (vi, vj) constructs a poly-
line that connects corresponding points pi, pj on the plane. The
algorithm computes the Voronoi diagram for all existing elements
(already drawn vertices and edges), finds an intersection-free path
along the edges of the diagram from pi to pj , and adds it as a poly-
line to the layout. If more than one path exists, Dijkstra’s algorithm
can be used optionally to find the shortest (in terms of line segments
or the distance travelled along those line segments) path. To guar-
antee the existence of at least one path between any two points, we
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Figure 1: The contour tree layout process. First we project the vertices. Then, we start iteratively connecting edges. The initial three edges
(f, d), (c, d), and (d, b), connect the points directly. Then, the edge (e, b) is routed via Voronoi diagram. Finally, the edge (b, a) is connected
through intersections of Voronoi diagram and bounding box, since no path through Voronoi diagram is available.

allow routing along the bounding box of drawn parts of the contour
tree, slightly extended in all directions.

We found that ordering the edges by their increasing L2-norm
length on the plane (i.e., direct Euclidean distance between the end
points of an edge) leads to fewer and shorter polylines in the final
layout. We note that often a few swaps in the ordering can lead to
the significant improvements in the layout, thus it is recommended
to try several slightly different orderings. One example criterion
can be swapping edges with close L2-norm lengths.

3.3 Landscape Construction

At this point we assume that we have obtained an intersection-free
contour tree layout, given by the set of points P and polylines on the
plane. Now we construct a landscape from the contour tree layout.

The main idea is to take a branch decomposition of the contour tree,
and for each branch (which is an extremum–saddle pair) construct
a contour that goes through its saddle and encloses its extremum.
If the branch has no children, i.e., it is a leaf branch, we construct
a triangle contour, see Figure 3. Otherwise, i.e., if it is a parent
branch, we sort its children in an ascending or descending order,
depending on the kind of extremum of the parent branch. Then, for
each child branch we perform two operations. First, we construct
contours for it as needed (recursively, if it is also a parent branch).
Second, we construct an offset contour for the previously processed
part of the parent, see Figure 4. One exception is the first child, for
which the previously processed part of the parent is an edge (e.g.,
processed part (f, d) of the parent branch (f, a) in Figure 2), hence
we use the triangle contour.

The sequence of processing the branches is based on the hierarchi-
cal traversal of the given branch decomposition. We start with a
root branch. If it is a simple branch, we construct the triangle con-
tour and return. Otherwise, we apply the parent branch handling
described above. For all child branches we call this procedure re-
cursively.

bcur(ecur, scur)
bcur ← root branch
function DRAWCONTOURS(bcur)

S ← all child saddles
if S = ∅ then

TRICONTOUR(bcur)
return

if val(ecur) > val(scur) then
sortDecreasing(S)

else
sortIncreasing(S)

for s ∈ S do
if s is first then

TRICONTOUR((ecur, s))
else

OFFSETCONTOUR((ecur, s))
DRAWCONTOURS(bs)

Figure 3: Triangle contour. Constructing a triangle contour
(black) for the branch (c, d) creates a valley with inner contours
(red) corresponding to the given branch.

Figure 4: Offset contour. Constructing an offset contour (black)
around the upper section of the saddle b creates a continuation of
the peak f with the valley c on it.

Now we provide geometric details of drawing contours. We repre-
sent each contour as a simply-connected polygon and maintain the
list of all polygons, associated with each saddle.

The function TRICONTOUR draws a simple triangle around the
given edge, see Figure 3. If the edge is polyline, we still compute a
single triangle for an edge of the same length as the given polyline
edge. Then, we recompute the triangle coordinates at the bends of
the polyline edge (see Figure 2, contour of the edge (e, b)).

The function OFFSETCONTOUR takes as an input an upper/lower
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Figure 2: Contour map construction process. We start from a root branch (f, a). It has children, so we sort them in descending manner,
and start with the child branch (c, d) that has highest saddle d. First, the upper (processed) section of it is an edge (f, d), so we construct the
triangle contour. Second, its child branch (c, d) is a leaf, so we also use the triangle contour. However, the upper section for the next saddle
b is complex, so we use the offset contour. Again, the corresponding child branch (e, b) is a leaf, so we use the triangle contour. Finally, for
the minimum a, we construct the offset contour for the branch (f, a), which concludes the contour drawing.

(already processed) section of some saddle s. It consists of con-
tours that belongs to the previous saddle sprev and an edge to it
from the current saddle, see Figure 4. Our aim is to enclose these
into a single contour. First, we note that each contour of saddle
sprev has a corresponding polygon. We combine all these poly-
gons into a single, non-convex, strictly-simple polygon Psprev ,
where strictly-simple means that the area, bounded by the poly-
gon, is simply-connected. We apply a 2D polygon offsetting
method, provided by Computational Geometry Algorithms Library
(CGAL) [cga ], to polygon Psprev . This offsetting produces new,
non-convex, strictly-simple polygon P offset

sprev . Second, we con-
struct the triangle for the edge (s, sprev). Finally, we apply 2D
polygon join operation (also provided by CGAL) to the computed
offset polygon and the triangle, and produce the output polygon
Ps = P offset

sprev ∪ T(s,sprev). This polygon is saved to the list of
contours for the current saddle s.

Once all the contours are drawn, we apply the constrained Delau-
nay algorithm (provided in CGAL) to create a triangulated surface,
resulting in a landscape with the given contour tree.

3.4 Comparable Landscapes

To produce comparable landscapes from several contour trees
T1, ..., Tk, we combine their vertices into one set V =
{V1, . . . , Vk} and apply the projection step of the algorithm to cor-
responding point set Pd

MDS−−−→ P2. After projection, we again sep-
arate each point set and continue with each separately. As a result,
we obtain landscapes that are comparable in terms of the locations
of corresponding elements.

4 Results

We have applied our technique to the problem of tuning a ray
casting algorithm on a multicore shared-memory system. We fol-
low the study, conducted by Bethel and Howison [2012] that ex-
plores wide range of potential tuning parameters for this algorithm.
For the purposes of demonstrating our technique, we select the
parameters mainly targeted by the study, namely the work block
width {1,. . . ,512} and height {1,. . . ,512}, and levels of concur-
rency {1,2,4,8}. We also consider an additional parameter, the ray
sampling method option, which can be either nearest-neighbor or
trilinear. This parameter produces two data sets (one for each op-
tion) that we will use later to demonstrate the comparative capabil-
ity of the geometry-preserving landscapes.

Each data set is obtained by running a ray casting algorithm based
on a selected ray sampling strategy and all combinations of other
input parameters, and recording the resulting normalized running
time, given in milliseconds. High running time corresponds to

poor performance, depicted in the landscapes as peaks. In Fig-
ure 5 we show the volume rendering of the performance data set
(produced by selecting trilinear ray sampling option), together with
corresponding geometry-preserving topological landscape.

First we note that it is visually easier to see the correlation between
features in the landscape than a direct visualization. For example,
from the landscape we can derive the closeness of the peaks, the
fact that needs some effort to check otherwise (e.g., by sweeping
different isovalues and constructing corresponding isosurfaces, see
Figure 6). This is an important observation, which suggests to the
domain scientist that there exists a subspace enclosing poor config-
urations to be avoided.

Further we produce the comparable landscapes by combining the
projection step for two data sets with trilinear and nearest-neighbors
ray sampling options (as discussed in Section 3.2). We observe a
correlation between two data sets (see Figure 6), where very high
peaks, i.e., particularly poor performing configurations, appear to
be close in both data sets.

An interesting observation can be made about moderate peaks (see
Figure 6). In the case of the trilinear ray sampling option, they
are distributed close to high peaks (circle A in Figure 6(a)). How-
ever, in the case of the nearest-neighbors ray sampling option, they
are distant from the main cluster (distinct circles A and B in Fig-
ure 6(b)). This observation provides an important insight into the
underlying behavior of the algorithm and the ray sampling option
selection. It can be suggested that if the parameter ranges are lim-
ited, the trilinear ray sampling option is preferable, since unlike
nearest-neighbors, in the lower parameter ranges it has no moder-
ate peaks, i.e., moderately poor configurations. This fact can be
easily missed in the direct visual exploration or other versions of
topological landscapes.

5 Conclusion

We presented a novel technique for building geometry-preserving
topological landscapes. In particular, we described three stages of
building such landscapes, the contour tree computation, the contour
tree layout, and the landscape construction. We provide all neces-
sary implementation details, and show an example application of
our technique to the real-world data.

We note that our technique can be applied only to moderate size
data, due to the potential explosion of the number of points/edges
during the iterative edge routing process. We plan to address this
issue in the future work by excluding the merge saddles from the
projection stage, thus adding flexibility in their placement.

Another issue that can we plan to address is calculation of the gap
distance during the offsetting. Currently, the algorithm roughly cal-
culates it as the shortest distance between any two points, divided



Figure 5: Trilinear ray sampling option data set. Volume render-
ing (top) and the corresponding geometry-preserving topological
landscape (bottom).

by the number of saddles (i.e., potential contours). A more pre-
cise approximation is possible, given that routing via the Voronoi
diagram maintains the half-distance to other elements.

Finally, we consider several interesting directions for the future
work. One direction is to expand the current landscape by embed-
ding more information. For example, we can associate the area,
bounded by contours, with an alternative importance metric (e.g.,
branch volumes, similar to the original method), while adjusting
the gap to increase/decrease the area as necessary. The landscape
colors can also be used for similar purposes. Another direction is
to use the information about the cancellation of critical points from
the Morse-Smale complex in the landscape construction, resulting
in a landscape that would have a correct Morse-Smale complex, a
feature that other landscape techniques lack.
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